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TESTING FOR STRUCTURAL BREAKS IN THE EVALUATION OF PROGRAMS

Abstract

A youth homicide reduction initiative in Boston in the mid-1990s poses particular
difficulties for program evaluation because it did not have a control group and the
exact implementation date is unknown. A standard methodology in program
evaluation is to use time series variation to compare pre- and post-program
outcomes.  Such an approach is not valid, however, when the timing of a potential
break is unknown.  To evaluate the Boston initiative, we adapt from the
macroeconomics literature a test of unknown break point to test for a change in
regime. Tests for parameter instability provide a flexible framework for testing a
range of hypotheses commonly posed in program evaluation.  These tests both
pinpoint the timing of maximal break and provide a valid test of statistical
significance. We evaluate the results of the estimation using the asymptotic
results in the literature and with our own Monte Carlo analyses.  We conclude
there was a statistically significant discontinuity in youth homicide incidents (on
the order of 60 percent) shortly after the intervention was unveiled.



I. Introduction

An initiative to reduce youth homicide citywide was unveiled in Boston in the summer of

1996. The �pre/post� comparison is impressive: the number of young victims of homicide fell

from 3.8 per 100,000 in 1995 to 1.25 in 1997.  Yet a scientifically valid evaluation requires more

than the test of difference in a simple time series.  The usual approach in such settings is to

compare the difference-in-differences.  But in this example, because of the design of the

program, the precise implementation date is unknown.  Perhaps more important, there is no

appropriate control or even comparison group, as all those people and locations at high risk were

targeted by the program.  As a result, neither difference can be computed.

Given that a difference-in-differences research design is not available, we turn to the

macroeconomic literature on unknown break points for guidance.  This literature has concerned

itself with identifying regime changes using time series data, which seems appropriate for

evaluating an initiative which aimed to change the regime under which youth functioned on the

streets of Boston.  The key advantage to the unknown break point approach is that the break

might not be where one thinks it is.  In particular, implementation lags in policy interventions

make it very difficult to say that a particular date defines the break between the �pre-program�

and �post-program� periods, even when the implementation date is known.  In such settings, if a

researcher were to use the time series to judge where to time the break, even informally, the test

would not have the correct critical values.  Rather, statistical significance in a traditional pre/post

analysis is overstated if ex post information is used to locate the time when the program is said to

have begun.

In this paper we build on the literature on unknown break points, applying it in a new

setting, program evaluation.  We use the methods to evaluate the Boston Gun Project and the



1 Membership in the working group included representatives from the Boston Police

Department, local and federal prosecutors, the Bureau of Alcohol, Tobacco and Firearms,

2

intervention it generated, Operation Ceasefire.  This setup allows us to report new results which

(1) test in the most general way for the existence of a break in the data series and (2) pinpoint the

timing of the break.  From these results we can calculate the magnitude of the impact.  In

addition, we explore alternative counterfactuals in order to assess the validity of the

interpretation of the break as a program effect.  Furthermore, the existing time series literature

provides only asymptotic distributions for the statistics used.  We conduct Monte Carlo analyses

to give us some insight into the use of this technique with finite samples and count data.  

The use of time series variation and the unknown break point technique has broad

applicability to other instances of program evaluation.  In particular, appropriate comparison

groups often cannot be located when the program target is at an aggregate level.  This paper

discusses ways in which the technique can be applied to other program evaluation cases with

possibly different characteristics.

II. The Boston Project

Before turning to the development of the methodology, we describe the essential

elements of the Boston youth violence reduction initiative.  In the early 1990s, amid concern

about the growing numbers of youth involved in homicides, both as victims and as offenders, a

multi-agency working group was convened to research Boston�s youth violence problem, to craft

a strategy to respond to the conditions, to implement that strategy, and to evaluate the

experience.1  Throughout the effort, the goal of the Boston Gun Project (BGP) was to reduce



probation and parole departments, community outreach workers, and academics.

2 For example, the high degree of corporatization reported by Levitt and Venkatesh

[2000] was not the norm observed in Boston.

3 Here we discuss the conceptual impossibility of utilizing control sites.  It would also

have been difficult or impossible in practice.  It is highly unlikely that any of the agencies

involved in the project would have agreed to �set aside� certain sections of the city as control

sites for the purpose of improving the evaluation design.

3

youth homicide in the city of Boston in the relatively near term.  Given that the agencies

represented in the working group had responsibility for the city as a whole, it was not possible to

designate a priori a portion of the city as a control site.  Rather, the group was prepared to work

against youth violence wherever it appeared within the city limits.

Research undertaken by the group indicated that youth homicides were concentrated

geographically (most incidents occurred within the three neighborhoods of Roxbury, Dorchester,

and Mattapan) and demographically (most victims were male and African American). 

Furthermore, an incident-by-incident analysis revealed that, conservatively, a minimum of 60%

of the homicides could be characterized as arising out of a nexus of disputes across �gangs.� 

(Relative to gangs in other cities, Boston gangs were relatively small with somewhat loose

organization.2)  These gangs were involved in longstanding antagonisms with each other, which

sometimes erupted in series of retaliations.  These disputes were not necessarily confined

geographically.  Because of the dynamics of these disputes, it was not possible to designate

�control� sites for the intervention.3



4 For more details on the basic research on youth homicide in Boston, see Kennedy,

Piehl, and Braga [1996].

5 This characterization was laid out ex ante [Kennedy et al. 1996], not as an explanation

for the results which appear later in the current paper.

4

The majority of the youth homicide incidents were even further concentrated among a

group of young men with whom many in law enforcement were familiar due to criminal activity

and gang associations, which are generally advertised through clothing or other symbols.4  The

working group designed a strategy to target deterrence messages and sanctions toward those

individuals and groups most active in perpetrating violence, and to do so on an ex ante basis. 

This was a departure from the usual practice of concentrating enforcement efforts on

investigation after crimes occurred.  From the point of view of prevention, there were two key

premises for the strategy.  First, �key personnel� were identifiable.  Second, retaliations were

responsible for an appreciable amount of the violence.  If key gangs and key individuals within

those gangs could be identified and reached by a deterrence message, the inter-gang dynamic

could be interrupted.  As is true in the general tipping model, if the interruption of the dynamic

were substantial enough, there could be a dramatic shift in the level of violence.  In short, the

regime on the streets could be moved from a �high violence� equilibrium to a �low violence�

equilibrium.5

Based on these premises, an intervention known as Operation Ceasefire was developed. 

Because law enforcement resources in the city were limited, choices had to be made as to which

incidents and threats could be addressed.  One element of the intervention involved members of

the working group sharing information to identify those involved in violent disputes in order to



6 For a detailed time line and a more discursive description of the details of the

intervention, see Piehl, Kennedy and Braga [2000].
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target resources.  Enforcement agencies customized sanctions to individuals and gangs

depending on their (often extensive) prior involvement with the criminal justice system by

enforcing conditions of probation and/or parole.  Due to the longstanding nature of antagonisms

between gangs, practitioners could predict conflicts with some success.  In such cases, both

enforcement and social services mobilized to prevent retaliations.  Finally, in order to deter

initiations of violence and retaliations, the working group �advertised� the goals, capacities, and

achievements of the initiative to individuals and gangs identified as �at risk� of violent assault or

victimization.

The project evolved as follows.  The working group was constituted early in 1995 and

met regularly during that calendar year to research the basic problem of youth homicide.  Results

were presented to the Boston Police Department and other partners in January of 1996.  Based

on this research, the strategy to be implemented was defined and refined over the spring.  In

May, the first formal event was held, a forum explaining the strategy to a group of gang

members.  At the end of June the strategy was publicly announced to the public at a conference

organized by the Boston Bar Association.6

Two attributes of the intervention pose particular challenges for evaluation design.  First,

the project evolved over time, moving from the research phase to strategy development and then

to implementation. Even once the strategy was �in place,� the intervention�s attributes changed

with the circumstances of particular violent outbursts and as the nature of youth violence in the

city evolved.  As a result, it is impossible to assert with confidence the date on which
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implementation of the intervention began and even more difficult to determine the date of any

effect without looking at the data.  Therefore, an evaluation should treat the timing of any

program effect as unknown.  Second, the hypothesis of the intervention design was that affecting

a dispute between two gangs would naturally have spillovers to other groups with which the

original gangs feuded.  The spillovers were expected to result from particular enforcement

actions.  Further, the working group hoped the deterrence message would be heard by others

uninvolved in the original dispute.

As a result of these features of the Boston initiative, �treatment� could not be randomized

over individuals.  There are two reasonable alternative evaluation designs in this case: time

series and panel.  In a panel design, the experiences of youth in other cities provide the

counterfactual for what would have been expected to occur in Boston in the absence of the

program.  However, trends vary greatly across cities and, in addition, there may well have been

spillovers as other cities adopted aspects of the program after it received positive media attention

early on.  Therefore it is not obvious that using other cities is preferable to using control

variables within Boston.  In this paper we utilize the time series variation within Boston alone,

applying a technique to locate a discontinuity in the youth homicide rate while controlling for

characteristics of the city that arguably changed over time in a manner consistent with the

observed changes in youth violence.

III.  Descriptive Statistics

The dependent variable for the evaluation of the initiative is the monthly number of

homicide victims aged 24 or under, provided by the Boston Police Department.  Figure 1 plots



7 Of the 169 homicide victims aged 24 and under from 1992-1994, 72% were black

males.  (Authors� calculations from the Supplementary Homicide Reports.)
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the raw data, from January 1992 through May 1998.  The number of homicides is relatively

small, with a number of months recording zero events.  The series exhibits a great deal of

variation, some of which is seasonal (with August and September having the highest homicide

rates).  This seasonal variation notwithstanding, one can see that the number of homicides is

particularly low late in the time series.

Table I reports descriptive statistics by year for youth homicide, population, and several

additional controls.  The first column shows that the average number of youth homicides per

month was between three and four in the early 1990s.  The number of incidents falls to around

one per month by the end of the period.

In explaining changes in youth homicide, it is potentially important to control for the size

of the population at risk.  The second column reports the number of African American males

ages 15-24, as most victims are members of this demographic group.7   The number in this group

fell by 7 percent over the time series.  It is worth noting that the results are not sensitive to the

particular population control used.  In fact, the population variable is generally not statistically

significant in the regressions reported below.

The youth homicide rate is reported in the third column as the number per 100,000

population, as is standard in reporting crime data.  This rate will not be used in the subsequent

analyses, but is reported here for illustrative purposes.  From 1992 to 1997, the youth

victimization rate fell 56% from approximately 24 to 10 per 100,000.
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Table I includes values for several additional variables which will be used later as

controls.  The number of homicide victims aged 25 and older (�adult� homicides) also fell over

this period.  When divided by the population aged 25-44, the adult victimization rate fell 28%

from 1992-1997.  To control for the booming economy, we use the teen unemployment rate,

which is reported in the final column.  Unfortunately, due to small sample sizes in the Current

Population Survey, this variable is only available annually, and only for the state as a whole. 

The teen unemployment rate fell by over half during this period.

III. Tests of Structural Change

The common practice in the program evaluation literature of defining a dummy variable

for the �post-program� period and testing for a change in mean or other parameters is generally

flawed on two grounds.  First, the precise timing of an effect of a program is not known, even if

the start date of the program itself is known.  Therefore, the �post� dummy variable may not

actually enter at the appropriate time for evaluating an effect of the program, and for this reason

the estimated program effect may not be correct.  Second, as Banerjee, Lumsdaine, and Stock

[1992] and others point out, when the break point in the data is not known a priori, conventional

hypothesis testing is not valid.  Specifically, conventional critical values for tests of parameter

change are not valid when the break point is inferred from examination of the data.  If one were

to use the conventional critical values, one might erroneously conclude that a break exists.  In

addition, a single break in a time series could lead to statistically significant Chow statistics for

many surrounding data points.  Thus a researcher could arrive at an erroneous conclusion

regarding both timing and statistical significance of a break in the time series.



8 See Stock [1994] for a complete review of this literature.
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In the program evaluation setting, these issues are particularly salient.  Even when the

start date of a program is known, implementation lags and even leads (through �announcement

effects� where the program has an effect before it even begins) make it virtually impossible to

identify the timing of effect a priori.  Rather, one determines when the effect occurred by looking

at the data.  It is this process that renders the conventional critical values for a Wald statistic

invalid.

What we propose (and apply in Section IV) is to use a test for structural change in the

case of an unknown break point, developed in the econometrics literature on time-series analysis. 

The time-series literature has addressed the issue of an unknown break point in an extensive and

lengthy literature which encompasses many different approaches to this problem.  However, the

branch of the literature most applicable to the approach proposed for the program evaluation

setting has its origins in the Quandt Likelihood Ratio (QLR) statistic [Quandt 1960].   This

statistic is the maximum F-statistic from a Chow test, evaluated over all possible break points. 

In other words, one searches for the maximal test statistic for the test of the null hypothesis of no

change in parameters.  More recently, others have extended this literature8 to allow tests of

partial structural change (i.e., changes in a subset of the parameters) and Andrews [1993] has

tabulated asymptotic critical values for the maximum Wald statistic.



9 We applied a Dickey-Fuller test to test for a unit root in the data.  We rejected the

existence of a unit root and therefore can apply this procedure.  While we applied the Dickey-

Fuller test to the full data sample, we recognize the potential for over acceptance of the null

when there is a break in the data.  However, we rejected the null of a unit root, so this over

acceptance is not relevant.

10

The approach is as follows.  Given a stationary time series,9 define a Wald statistic for the

null hypothesis that the parameters of interest do not change between periods:

 for all tH t0 0:β β=
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where  is the fraction of the sample before the point of parameter change, i.e., isπ ∈ ( , )0 1 Tπ

the time of the change.  There can in addition be another parameter vector which is invariantδ0

with respect to π.  In other words, one can test the null hypothesis that the parameters do not

change against the alternative hypothesis that a particular subset of the parameters does change.  

The sup Wald statistic is therefore analogous to the QLR statistic (and therefore also to a Chow

test).



10 In applying this unknown break point test we refer to the critical values in Andrews

[1993] as well as conduct our own Monte Carlo analysis to account for our small sample size and

count data.

11 Bai [1997] derives a confidence interval for the location of the break point.  However

this is not applied here because in the program evaluation setting the primary goal is to

determine the existence of any program effect.

11

The Wald statistic for the null hypothesis of no change in parameters is computed for all

possible break points in the time series.  The maximum of these (i.e., the sup Wald) is the test

statistic of interest.  Clearly if one simply looked for the maximal Wald statistic over all possible

breaks, conventional critical values for this test statistic could not apply since one searched for

the highest possible value.  Rather, alternative critical values specifically for the sup Wald, and

not the Wald statistic in general, must be applied.

If the maximal Wald statistic exceeds the appropriate critical value, then one rejects the

null hypothesis of no break in favor of the alternative that the parameters change at the point

identified by the maximal Wald statistic.10, 11  If this statistic does not exceed the critical value,

then one can conclude that there was no statistically significant change in parameters. In the

program evaluation context, a finding of a sup Wald statistic that does not exceed the critical

value is interpreted as finding no program effect.  It is important to note that when one does find

a break it can only be indirectly attributed to the program.  Although a break in the parameters of

a regression relationship has been found, but it has not been proven that this break was caused by

the program intervention.  Of course, this limitation in interpretation is equally present in simple

�pre/post� program analyses.



12 In addition, one could consider approaches even farther afield, such as the approach of

Hamilton [1989] and Potter [1995] which parameterize a regime-switching mechanism and then

estimate the parameters of this mechanism.  Another approach is regression tree analysis, as

applied in Cooper [1998].  Even farther afield, one might consider a Bayesian approach where a

prior on the break is specified and then a posterior distribution of the break is derived.

12

There are, of course, many alternatives to the sup Wald test applied here.  The CUSUM

statistic [Brown, Durbin, and Evans 1975], the Nyblom [1989] statistic, and the Andrews and

Ploberger [1994] approach all address the unknown break point (change point) issue in

analogous but somewhat different ways.  Generally these approaches evaluate the adequacy of

the model in a diagnostic sense and are not specifically geared toward identifying the location of

the break, although the break can be identified.12

One characteristic of the sup Wald test in particular is that the alternative hypothesis is

well-specified.  In the program evaluation setting, we have a particular alternative hypothesis in

mind, i.e., that there was a change in parameters at the time of break.  We prefer the sup Wald

test here for several reasons: (a) our goal is larger than an assessment of model accuracy, (b) the

alternative hypothesis is well specified, and (c) the sup Wald test has a particularly compelling

intuition for the program evaluation case.  In addition, the sup Wald test has asymptotic power

against the more vague alternative hypotheses. It should be noted, however, that there is no

consensus in the time series literature on which approach is most suitable in general.

In our application we expect any program impact to appear as a discrete change in mean,

for reasons motivated in Section II.  However, one might, in some circumstances, want to

consider a gradual transition from one level of the outcome variable to another.  In other
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circumstances one might consider multiple discrete changes.  The sup Wald test described and

applied here is applicable in both of these cases.  These types of models are considered both in

the time series literature and in our empirical application, in Section VII below.

In practice, to apply the unknown break point technique in a program evaluation setting,

one first needs to define the regression relationship of interest, i.e., the outcome that one

hypothesizes might be affected by the program as well as any control variables.  Second, one

specifies what parameters are permitted to change, i.e., mean or trend, some subset of the

regression parameters, or all regression parameters.

One decision to be made when applying this technique for searching for a data break is

the choice of the �trimming� value.  When one searches over all possible locations for a break in

some parameters, one needs to specify how far into the sample one starts looking for a break and

how close to the end of the sample one stops looking.  The reason for not looking from the first

observation to the last is that there must be a sufficient number of observations on either side of

the point under consideration to estimate the regression relationship both before and after the

break point. 

Trimming is generally done symmetrically from both ends of the sample.  For program

evaluation, because one wants to know the answer in real time, the range in which one wants to

consider a break may come close to the end of the sample.  In small samples the inclination may

be to trim a higher percentage of the sample in order to have sufficient observations to evaluate

the earliest and latest potential break points.  However, at the same time, one sacrifices having a

large range of data points to consider.  When evaluating a program, one needs to consider how

much data to collect before attempting an evaluation.  The need to trim in order to estimate



13 While trimming may not be of critical importance in much macroeconomic data, it

does raise an interesting point in the program evaluation setting.  How much data should one

collect on either side of a data point that one is not supposed to assume a priori?  This question is

particularly relevant because it is often costly to wait for experience to accumulate before

performing an evaluation.

14

parameters of interest alerts the evaluator to the importance of accumulating enough experience

(i.e., data) before testing for a break (program effect).13

In addition, when applying the structural break methodology to program evaluation, one

must consider whether to look in a narrow "window" of dates for the break.  The time series

literature does not address this question.  In program evaluation, however, this issue is

particularly relevant because a break may be found at a date sufficiently far from the program

date as to question its interpretation as a program effect.

There are two possible ways of addressing this situation.  First, one can a priori construct

a window or range of dates in which to look for a program effect, and restrict application of the

structural break methodology to those dates.  This does not raise the Chow test problem as long

as the range of dates is selected by knowledge of the program and not by looking at the data.  

A second possibility is to allow for multiple breaks in the time series.  Then when a break is

found far from dates relevant to the program, one can condition on that break and search for

another break to see if there is a break that could be attributable to the program.  These

approaches are not particularly different in the sense that in either case one must use knowledge

of the program to determine where to consider a break in the time series as attributable to the



14 As the discussion above indicated, the sup Wald test is applicable for a broad range of

different specifications.

15 There is no reason, from what is known about youth homicide, to believe that there

would be changes in the seasonality or in the relationship between economic conditions, for

example, and homicide.

15

program.  However, in both cases one can do better than by specifying a date a priori for a

program effect and applying a Chow test.

The unknown break point tests in general, and the sup Wald test in particular, are broadly

applicable to the program evaluation problem even though they are derived from the time series

econometrics literature.  One can search for and test for the existence of a break in some

outcome, thus avoiding the pitfall of assuming when a program had its effect.  One can define

the type of effect one is looking for (for example, a change in mean or some other parameters). 

And most important, one achieves a statistically valid conclusion regarding the existence (or not)

of a break in the time series. 

IV. Empirical Results

This section tests for a structural break in the Boston youth homicide time series using

the sup Wald methodology.   Here, we test for a change in the mean number of youth

homicides.14  The initiative hoped to move the level of homicide to a new, lower equilibrium. 

That is, controlling for other factors, if there was a program effect, it should appear as a discrete

shift in mean.15  As a result, our application is relatively straightforward: regress the dependent

variable on a series of controls, including month indicators and population, and test for a change



16 Fifteen percent trimming is the amount recommended by Andrews [1993].  As less of

the sample is trimmed off the ends, the critical values get larger in recognition of the fact that

fewer data points are pinning down the ends of the time series.  On the other hand, in a finite

sample, trimming a greater proportion of the data can dramatically reduce the (sometimes

already small) sample size.  We found no reason to deviate from the recommended level of 15%

16

in the constant.  As a robustness check, we consider alternative specifications of the form of the

break.

Because of the count nature of the data, Poisson regression is a logical choice for

specifying the model.  However, in the Poisson the variance equals the mean.  As a result, testing

for a break in mean must also be a test for a break in the variance.  We did not want to test for

such a compound hypothesis.  Instead, we simply ran OLS, correcting the standard errors for

heteroskedasticity.  This allowed us to test for a change in the mean without making any implicit

assumptions about the variance.

As discussed in the previous section, we must define a range of dates for possible

treatment effect.  Any break found outside that window is not plausibly attributable to the

program.  In order to be as agnostic as possible with regard to potential announcement effects or

implementation lags, we chose a wide window.  Therefore, we defined the window for possible

impact to run from January 1996 through May 1997, giving generous room for announcement

effects and 12-months post actual implementation to allow for lagged impact.

Table II reports the results of running OLS on the monthly number of youth homicides

from January 1992 through May 1998 for three sets of control variables, trimming 15 percent off 

each end of the time series when searching for the maximal break point.16  All models include



trimming.  Nonetheless, as a robustness check, we ran our specifications with 10% trimming. 

The month of maximal break was unaffected by changing this parameter.

17 The results are not sensitive to the choice of month for placement of the annual value

for interpolation.

17

controls for the population of black males aged 15-24 and a full set of month dummies.  In order

to avoid introducing any breaks into the data, we linearly interpolated the data which are only

available annually (i.e., population and the teen unemployment rate).17

The first column reports the maximum value of the Wald statistic for each model.  For

model A, the sup Wald value (33.70) occurred in June 1996.  This test statistic far exceeds the

conventional critical values for a Wald statistic, e.g., the 5% Chow critical value is 3.97 for 77

observations.  Furthermore, the test statistic exceeds the 5% asymptotic critical value for a break

in one parameter with 15% trimming from Andrews [1993], which is 8.85.  (We would expect

the Andrews critical value to be much higher than the Chow value given the search for the

maximal value of the Wald statistic.)  However, because of our small sample and the count data,

we do not feel comfortable relying on the asymptotic critical values and therefore, in the next

section, assess statistical significance with Monte Carlo results.  The effect size is reported in the

final column:  a reduction of 2.49 homicide victims per month, or an approximately 72% decline. 

Note that June 1996 falls inside the window for possible treatment effect.  However, before we

can call this decline purely a treatment effect, we must also consider other factors that might

have led to a decline in youth homicide in the absence of the program.

In model B, we used the rate of �adult� homicide victimization to control for the

counterfactual for youth homicide in the absence of the program.  This is quite a strict test given



18 Using data from Supplemental Homicide Reports, Cook and Laub [1998, Table 5]

report that young homicide offenders tend to kill people who are older than them.  For killers

aged 13-17, 75 percent of their victims are older than the killer and over 50 percent of victims

are more than five years older than the killer.

18

that the intervention could very well have affected the victimization of older people (directly, if

younger people reduced their victimization of older people,18 or indirectly, because enforcement

was targeted at a type of offending, not strictly on age).  With adult homicide as a control, the

break continues to be located in summer of 1996, now August, though the value of the sup Wald

is now 20.93 and the effect size is somewhat lower (a 2.12 victim reduction per month).  With

the break so located, the adult homicide rate has a p-value of 0.12.

Model C adds the teen unemployment rate to the controls for the previous model. 

Adding this covariate reduced the maximal value of the Wald statistic by over half (to 8.89).

Since the unemployment rate in general was falling over the time period of this analysis, these

results are not surprising.  The break was still placed in June 1996 and the effect size remained

near 60%.  At the same time, the unemployment rate was not statistically significant in

explaining the number of youth homicides with the break in the maximal month.  The finding

that unemployment is not strongly related to crime is not unusual in the literature [Piehl 1998]. 

The precise timing in the relationship between unemployment and youth homicide appears to be

coincidental.  Unemployment was falling continuously during this time due to a general

macroeconomic boom.  For this reason, the unemployment rate acts much like a linear trend in

this analysis.  We further explore the role of a linear trend in Section VI.
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V.  Monte Carlo Results

As noted earlier, the asymptotic critical values may not be appropriate for determining

the statistical significance of the Wald statistics reported in Table II.  Because our sample size in

this paper is only 77 monthly observations, we need to generate our own critical values through

Monte Carlo analysis.  A second reason to do our own Monte Carlos is that the data in this paper

are counts of youth homicide and critical values were not calculated for count data in the

published literature.

In order to produce appropriate small-sample critical values based on count data for

comparison with our sample test statistics, we generated data using the properties of the actual

data, but without a break, and then computed the size of the test for structural break.  In

particular, we conditioned on the independent variables in the regression (i.e., we ran a separate

Monte Carlo analysis for each of the specifications reported in Table II).  We conditioned on the

independent variables because it is not possible to generate time series data with the properties of

the actual data for the right-hand-side variables because these are measured over too short a time

span to accurately determine the time series properties.

Conditioning on the independent variables is valid as long as they are truly exogenous.

Exogeneity of population is difficult to refute:  the number of homicides is so small relative to

population that population cannot be determined by the number of youth homicides with any

lead or lag.  The adult homicide rate is perhaps more questionable.  Exogeneity requires that the

adult homicide rate not be determined by the youth homicide count (the dependent variable in

our analysis).  One might argue that a change in the youth homicide count could affect the adult

rate in a future period.  However, we consider the independent variables to be exogenous and



19 In particular, for each specification we ran a Poisson model and computed the variance

of the residuals.  For size calculations we used the variance over the full period and for power

calculations we used the variance in each of the two subperiods defined by the appropriate break

point from the actual data for the specification.  For each of 10,000 draws we used these

variances to generate 77 observations using the Poisson distribution.  For each draw we then ran

OLS with the appropriate controls for that specification, calculating the maximum Wald statistic

and its location in the time period. 

20  For 77 observations these are: 2.77 at the 10% significance level, 3.97 at 5%, and 6.98

at 1%. 
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condition on these variables in the Monte Carlo analyses of size and power.  If one is concerned

about lack of exogeneity of the adult homicide rate, one would prefer specification A over

specification B.

To evaluate the statistical significance of this sample test statistic using the Monte Carlo

analysis, we generated data with the full-sample properties but without a break in mean.  We can

then see how often the test of structural break finds a break when there is none.  In addition, we

used 15% trimming and a test for break in mean in the Monte Carlo analysis, just as with the

actual data.  Monte Carlo results for each specification of independent variables were generated

from 10,000 draws under these conditions.19

The results of the Monte Carlo analysis of size are reported in Table III, together with the

asymptotic critical values for the max Wald statistic from Andrews [1993].  As is to be expected,

the critical values for any particular size, regardless of specification, are higher than the

conventional Chow critical values.20  The Monte Carlo critical values are fairly consistent across
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specifications.  There is some variation, however, which is not surprising as the number and

nature of independent variables changes.

In comparing our sample test statistics from Table II with the small-sample and count-

data-consistent critical values in Table III we find quite strong evidence for the statistical

significance of the structural breaks found.  For specification A, the sample test statistic is 33.7,

which exceeds the critical value at even the 99% level (15.7).  For specification B, the sample

test statistic is 20.9, which also exceeds critical values beyond the 99% level (15.9).  The sample

test statistic for specification C is much lower, at 8.89.  This lower test statistic is likely due to

the decline in the unemployment rate over this time period, which absorbs some of the decline in

the youth homicide count.  However, as explained earlier, we do not find this a convincing

explanation for the decline in youth homicide and therefore are doubtful that this decline in the

sample test statistic reflects a less significant program effect.  However, to be complete, we can

compare this test statistic with the critical values for specification C and find that we reject the

null hypothesis of no structural break with a p-value of 0.13.

For specifications A and B, the power of the structural break test is clearly not an issue

since we found convincing evidence of structural breaks.  However, for specification C, where

there is weaker evidence of a break, we might wonder whether this is really less evidence of a

break or simply low power of the maximum Wald test.  Table IV reports results of Monte Carlo

analysis of power of the test for the same three specifications we have considered throughout. 

Data were generated under the specific alternative hypothesis that there is a break in mean which

matches both the magnitude and location of the break in the actual data.  Clearly specifications A

and B have quite high power to detect breaks.  The power for the third specification is quite a bit
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lower, however, reconfirming our hypothesis that it is harder to find a break, even when one

exists, with this set of control variables.  In particular, Table IV indicates that for specification C

(i.e., controlling for population, adult homicide rate, and the questionable youth unemployment

rate), we would find a break in mean youth homicide counts only 45% of the time (using a 90%

critical value) even when such a break truly exists.  For the 95% critical value we would find a

break in mean only 33% of the time when in fact such a break exists.  Therefore we should not

be surprised that we reject the null hypothesis of no structural break at only the 13% level with

this specification.

Overall, the Monte Carlo analysis is quite informative.  Because the resulting critical

values are higher than the asymptotic values, the need for Monte Carlo analysis is apparent and

recommended in general when applying the test of structural break.  Other interesting findings

from the Monte Carlo analysis shed further light on the properties of the test.  In particular, the

distribution of test statistics is quite nonlinear, with the critical values rising steeply in the upper

tail.  We do not find this surprising since in a test of structural break we expect that spurious

breaks with high test statistics will be found, but rarely, indicating that very far in the tail there

will be spurious high values of the maximal Wald statistic.

Interestingly, the distribution of the location of maximal Wald statistic is not entirely

uniform as one might expect when the generated data have no break.  Figure 2 shows the

distribution of �months� in which the maximal test statistic is found.  While this figure is based

on specification B, its qualities are representative.  The figure indicates that the test of structural

break is more likely to find the maximal Wald statistic near the ends than in the middle of the

time series.  While this might be of some concern in an analysis where the suspected break is
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indeed near the ends of the time series, it is not of concern to us.  The maximal test statistic in

our sample data, as reported in Table II, is month 54 which falls in the range of months where

relatively fewer maximal test statistics are found.  While Figure 2 does suggest a tendency for

the structural break test to find maximal test statistics near the edges of the time series, it is not

the case that such findings would necessarily be statistically significant given the results in Table

III, and therefore may not be of much concern overall.

VI. Robustness

The methodology presented and applied in this paper can tell us whether there is a break

in the time series for some outcome variable, and if so, where that break is.  In this section we

consider alternative explanations for the change itself.  In particular, in order to interpret a break

in the time series as indicating a program effect we must be certain that the break does not

appear for any other reason.  As with any program evaluation question, regardless of

methodology for estimating the program effect, the effect can be interpreted as due to the

program only when all other possible reasons for the change have been ruled out.  These

alternatives will in general be specific to the problem under investigation.

One possible criticism of the conclusion of the previous section that youth homicide fell

substantially is that youth homicide was falling over the entire time period in Boston and no

abrupt change in the number of homicides would be found if we in fact controlled for this longer

term decline.  We chose specification B as a baseline because we feel that the adult homicide

rate is the best control for the counterfactual for youth homicide. The first row of Table V

presents the result of expanding specification B to include a linear trend control.  Adding a linear



21 The result is slightly different from specification B which had the maximum break in

August 1996 in Table II, but specifications A and C had the maximum break in June 1996, so the

general finding is upheld.
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trend to this specification reduces the maximum Wald statistic to 6.93 (from 20.93).  The month

of maximum break is June 1996, which is substantively the same as the results in Table II.21  The

maximum Wald is much lower with the linear trend included, and in fact we reject the null

hypothesis of no break at only the 26% level. 

While the general impression of the program evaluation is the same with the trend

included, the substantial decline in significance level requires a closer look at these models.  In

applying the structural break methodology, we need to have the correct specification of the

regression model under the null hypothesis of no break.  If a linear trend belongs in the model,

then we would need to include it in the analysis in order to have the correct inference on the

break in mean.  However, if there is no trend in the true relationship and we include a trend

variable, this will obscure inference on the break in mean.  In particular, while inclusion of an

irrelevant variable in ordinary regression analysis does not bias the coefficients, the structural

break methodology testing for a change in mean is looking for a change in the dependent

variable over time.  Inclusion of a trend could absorb some of the change in mean, even if there

is no trend in the data, i.e., if there are just two regimes with different (constant) means.

To understand the effect of including a trend, consider data with a break in mean but no

trend. Fitting a trend to that time series will clearly absorb some of the change in mean, leaving

less to identify as a break.  In particular, to analyze this effect in our example, we generated data

from the parameters of specification B (i.e, consistent with the data generated for the power



22 Of the break months found in the Monte Carlo analysis, 82% were within 6 months of

the generated break date when no trend was included, relative to only 66% when a trend was

included.
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analysis of specification B presented in Table IV) with a break in mean but no trend.  We then

computed a power-like calculation (based on 10,000 draws as in the Monte Carlo analysis)

where we considered how often we would reject the null of no break when we included a trend

as a control variable even though one was not present in the data generation.  Our finding is quite

striking.  We reject the null hypothesis of no break (even though one exists) only 48% of the

time for the 90% critical value.  By comparison, the power associated with specification B for

this critical value is 87%.  Therefore, inclusion of the trend, even when none is present in the

generated data, reduces almost in half the possibility that a known break can be found.  For those

cases when the break month is within 6 months of the actual break date, the ratio of the

maximum Wald statistic for the case with trend relative to the case without trend is only 0.62.22

Clearly inclusion of a trend, even when none is present in the data, substantially reduces

the possibility of finding a break, even when one does exist.  The trend results confirm our

interpretation of specification C, which showed weaker evidence of a break in mean when the

(downward trending) unemployment rate was included.  The fact that even when controlling for

a linear trend the timing of break is virtually the same, although with lower statistical

significance, reinforces our finding that there was a dramatic decline in youth homicide in

Boston in the middle of 1996 that was not part of an otherwise existing downward trend in youth

homicide.  The broader point is that specification of  trend (and trending variables) must be done

carefully when using the structural break methodology.



23 We find similar results when we use the national youth homicide rate to represent the

counterfactual instead of the linear trend.  An analysis of the youth homicide experience of other

large U.S. cities over a similar time period revealed no robust or systematic breaks.  Together,

these results suggest the Boston experience was unique.

26

To further investigate the impact of including the trend control in the analysis, we

considered the possibility of a break in that trend, as well as a break in mean.  The result of this

specification is presented in the second row of Table V.  In this case we find that the timing of

break is roughly similar (in fact it is identical to specification B and within 2 months of all other

specifications).  The statistical significance of the break (now a break in two parameters) is also

somewhat improved from the case of including a trend with only a break in mean.  The null

hypothesis of no break in mean and trend is rejected at the 12% level using the Monte Carlo

critical values.  This specification in fact resembles specification B more than it resembles the

previous specification (which was B plus a trend).  Our interpretation is that including the linear

trend absorbed some of the break in mean.  Allowing the trend to break reduced the absorption

of the mean decline by relaxing the restriction that the trend be linear.  The fact that the trend

broke suggests that a linear trend was mis-specified.

Overall we conclude that the change in the mean monthly number of youth homicides in

Boston was not due to an overall downward trend in the data.23  The results of including the

linear trend, as well as allowing a break in both mean and trend, give qualitatively similar

findings to specification B.  Furthermore, neither of these alternative specifications leads us to

question specification B as an appropriate model.  By controlling for a general downward trend,

as well as the decline in adult homicide that occurred at the same time and probably even due to



24 For example, Andrews [1993] allows changes in multiple parameters and Bai and

Perron [1998] analyze multiple breaks.
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the same program, we are confident that we have ruled out any likely possible alternative

explanations for the decline in the youth homicide rate.

VII. Extensions

A final consideration in applying the structural break methodology to program evaluation

questions is the specification of the form of the possible break.  In general it is possible to have a

program that suggests a more complicated program effect than a break in mean.  If one thought

there were going to be a gradual implementation, a break in mean and trend could be allowed. 

Alternatively, one might think of implementation in stages, allowing multiple points of impact,

in which case multiple changes in mean could be allowed.  These generalizations have been

developed in the time-series literature.24

We do not expect these more complex specifications of the program effect to help

explain the Boston Gun Project because the program was anticipated to lead to a change in mean

if it worked at all.  Rather, we apply these generalizations of the form of program effect to

illustrate the flexibility of using the break-point approach for program evaluation.   The first

possibility has already been considered.  The break in mean and trend specification discussed in

the previous section allows for the possibility of a shift in mean at the time of program effect,

with a different trend from that point forward.  If we thought that the program would have an

immediate downward effect on youth homicide, as well as a gradual decline in the subsequent

period, this specification would make sense.  As discussed earlier, these results are presented in



25 We do not do a Monte Carlo analysis of multiple breaks due to the small sample size.
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the second row of Table V.  The results of this specification do not suggest a gradual decline (or

a gradual return to the previous level) of youth homicide.  The results on the break in trend

suggest that this variable is simply acting as an alternative means of describing the change in

mean that we observe.

Another alternative specification of a program effect could be an effect in stages.  By

looking for only one break in mean we have not allowed for the fact that a subsequent change in

mean might occur.  We implement this alternative in our context and the result is presented in

the third row of Table V.  The Bai and Perron [1998] approach involves searching for an initial

break and then conditioning on that break and then searching and testing for a second break.

When we allow for a second break in specification B, conditioning on the first break, the

maximum Wald for the second break is only 5.42 in November 1996.  This value is substantially

below the asymptotic critical value at the 10% level and therefore the null hypothesis of no

second break, conditional on the first, is not rejected.25  Considering the multiple break and break

in mean and trend results together, it does not appear that the decline in youth homicide in

Boston took place in discrete stages or as a gradual decline.

Finally, although also not relevant in our application, one could also allow the

relationship between the independent and dependent variables to change as a result of a program. 

For example, one might think that the underlying relationship between unemployment and job-

seeking behavior could change with a particular type of training program.  One can use the

structural break methodology, testing for a change in a particular coefficient in addition to (or

instead of) a change in mean and/or trend.
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Overall, our analyses of alternative specifications of the form of the break do not suggest

any different findings on the existence of a program effect in our application.  There do not

appear to be multiple stages of the decline in youth homicides, nor does there appear to be any

substantive difference in the findings even if we allow a break in trend to permit a gradual

transition.  Indeed, a gradual transition following the commencement of the intervention does not

appear to have taken place.

A break in mean following implementation is the clearest description of what the data

show.  In addition, we interpret this decline in mean as supporting our view that the decline is

due to the BGP program.  If any alternative forms of break gave different results we might

wonder how to interpret the findings.  But all specifications point to a decline in mean within

three months of the best approximation of implementation.  Together with the robustness

analysis in Section VI, we have confidence that we have estimated the effect of the BGP

program to be a decline of 60% in youth homicide, which translates into two fewer youth deaths

per month.

VIII.  Conclusion

Substantively, this evaluation has found that there was a statistically significant break in

mean associated with substantial decreases youth homicide in the summer of 1996.  This

discontinuity coincides with when the BGP was implemented.  Controlling for population, the

adult homicide rate, and a linear trend, we have confidence that we have captured a program

effect rather than an unrelated change in youth homicide.  Any alternative explanation for the

drop in youth homicide over this period would need to be able to account for the suddenness of
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the change at that time, and we have not discovered any convincing explanations with this

quality. As with any program evaluation, there is necessarily some uncertainty about which

particular attributes of the program were necessary to the impact.  We are much more confident

in our conclusion of the existence of a program effect having used statistical methods that take

into consideration the unknown timing of the break point than if we had used traditional program

evaluation methods. 

From applying a test of structural break to program evaluation, we conclude that the

method is flexible and easy to use.  While our application tested for a break in mean because the

model underlying the intervention was a tipping one, many other types of effects can be

evaluated with this procedure.  One can test for a break in the entire set of controls (�regime

shift�) or, as more likely relevant to program evaluation, for a break in trend or a break in the

relationship of the outcome to a single control variable.  The structural break test is useful

because it can identify timing and statistical significance of program effects even when the

timing of effect is uncertain a priori, and can give different inference from the usual methods. 

The last point is not a technical detail.  Traditional Chow tests overstate statistical significance

when used for program evaluation.  Given that the primary motivation for evaluating a program

is to test whether an intervention �worked,� using appropriate methods for statistical inference is

essential.
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Table I.  Descriptive Statistics: Means
(standard errors)

Youth
Homicides

Population
Black
Males
15-24

Youth
Homicide

Rate

Adult
Homicides

Population
25-44

Adult
Homicide

Rate

Teen
Unem-

ployment
Rate

1992 3.083
(0.543)

12,977 23.83
(4.249)

3.250
(0.676)

228,465 1.420
(0.296)

20.2

1993 4.000
(0.537)

12,455 32.00
(4.297)

4.167
(0.458)

227,218 1.833
(0.202)

18.8

1994 3.167
(0.520)

12,272 25.75
(4.220)

3.917
(0.802)

226,611 1.723
(0.352)

15.9

1995 3.833
(0.716)

12,222 31.45
(5.882)

4.167
(0.815)

231,367 1.806
(0.353)

14.7

1996 2.083
(0.358)

11,895 17.41
(2.984)

2.667
(0.512)

230,744 1.156
(0.222)

13.8

1997 1.250
(0.351)

12,038 10.37
(2.909)

2.333
(0.355)

228,696 1.020
(0.155)

12.6

1998 0.800
(0.374)

12,359 6.50
(3.031)

1.400
(0.748)

224,471 0.620
(0.331)

8.8

Sources: Homicide data were provided by the Boston Police Department.  Population data came
from the Bureau of the Census and unemployment rates for teens in Massachusetts were
provided by the Department of Employment and Training (unpublished data).

Notes: The homicide data are monthly.  The population and unemployment variables are
reported annually, and have been linearly interpolated.  1998 contains data only through
May.  The homicide rates were calculated per 100,000 population using the associated
population denominator, linearly interpolated.



Table II.  Parameter Instability in Youth Homicide: Tests for Break in Mean
Various Sets of Control Variables

Model

Maximum
Wald

Statistic

Month
of Max.

Population Adult
Homicide

Rate

Teen
Unemp.

Rate

Effect
Size

   A 33.70 June
1996

yes � � -2.49
(72%)

   B 20.93 August
1996

yes yes -- - 2.12
(62%)

   C 8.89 June
1996

yes yes yes - 2.02
(59%)

Sources: See Table I for descriptions of the variables.

Notes: 11 month indicators are included in all specifications in addition to the controls noted in
columns (4) through (6).  N = 77 months, January 1992 through May 1998.



Table III.  Monte Carlo Critical Values: Size

Significance Level

p=.20 p=.15 p=.10 p=.05 p=.01

A 7.08 7.86 8.98 11.01 15.72

B 7.10 7.93 9.01 10.90 15.86 

C 7.73 8.57 9.75 11.76 17.04

Asymptotic -- -- 7.17 8.85 12.35

Notes: Monte Carlo critical values result from 10,000 draws of 77 observations from Poisson
with variance from the true data, with 15% trimming, testing for break in mean only.

Asymptotic critical values are from Andrews [1993].  Critical values are for 15%
trimming and a break in one parameter.  Note that these critical values are not for count
data.



Table IV.  Monte Carlo Calculations: Power

Significance Level

p=.20 p=.15 p=.10 p=.05

A 99.2% 98.9% 97.8% 95.1%

B 93.3% 90.8% 87.0% 78.9%

C 60.3% 53.8% 45.2% 32.9%

Notes: Power is for the associated critical value from Table III.



Table V.  Parameter Instability in Youth Homicide: Robustness Checks

Asymptotic
Critical Values

Monte Carlo Critical
Values

Model

Maximum
Wald

Statistic

Month
of Max.

p=.10 p=.05 p=.10 p=.05

B + Trend 6.93 June
1996

7.17 8.85 9.77 11.88

Change in Mean
& Trend

13.24 August
1996

10.01 11.79 14.46 17.41

Multiple Breaks
in Mean

5.42 Aug96
/Nov96

9.56 11.14 -- --

Notes:  N = 77 months, January 1992 through May 1998. Independent variables included in each
specification are:  population, adult homicide rate, trend (in the first two rows), and 11
month indicators.  

For the first two models, asymptotic critical values were taken from Andrews [1993].  
For the final model, asymptotic critical values were take from Bai and Perron [1998]. 
Monte Carlo critical values result from 10,000 draws of 77 observations from Poisson
with variance from the true data, with 15% trimming.
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Figure 1. Monthly Youth Homicide Count 1/92-5/98
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Figure 2: Monte Carlo Maximal Break Points: Size 
(Specification B)
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